Записи с меткой «распределение»

Кожа и влага

Сбережение влаги является одной из важнейших функций кожи, и от того, насколько успешно кожа с нею справляется, во многом зависит ее внешний вид. Сохранение влаги было вопросом жизни и смерти для первых наземных животных. По законам равновесия вода стремится равномерно распределиться между внутренней средой организма (где содержание влаги порядка 70-80 %) и окружающей средой. Поэтому выйти на сушу и расселиться в местностях, удаленных от водоемов, не опасаясь высыхания, удалось лишь тем, чья кожа оказалась достаточно надежной преградой для воды. При этом на кожу была возложена двойная нагрузка — она должна была сохранять влагу внутри тела и заботиться о своем собственном увлажнении.
От потери влаги организм частично защищает жировая прослойка (гиподерма), которая окутывает наши тела подобно мантии. За гиподермой начинается дерма, которая имеет свой собственный источник водоснабжения — сеть кровеносных сосудов.

Просочившись сквозь стенки капилляров в межклеточное пространство, вода сразу связывается с молекулами межклеточного вещества дермы, образуя гель. Таким образом, дерма тоже сберегает воду, однако она действует не как барьер, а скорее как «губка» или «памперс». Излишки воды медленно поднимаются к поверхности кожи, просачиваясь в эпидермис.

В эпидермисе уже нет кровеносных сосудов, поэтому его увлажнение полностью определяется тем, сколько воды поступает в него из дермы, и тем, насколько интенсивно она испаряется с поверхности кожи. Большую роль в увлажнении рогового слоя играет натуральный увлажняющий фактор (NMF) — комплекс гигроскопичных молекул в эпидермисе. Эти молекулы способны притягивать влагу из воздуха и удерживать ее у поверхности кожи. Поэтому прогулки в дождь и туман так благотворно сказываются на состоянии кожи (конечно, при условии, что дожди в данной местности не содержат вредных веществ).
Итак, в коже существует динамическое равновесие между испарением воды и поступлением ее из кровеносных сосудов. Нормальный водный баланс очень важен для внешнего вида кожи. При гипергидратации кожа набухает и сморщивается (как при длительном купании), а при дегидратации теряет упругость и покрывается морщинами.

Чаще всего кожа страдает от дегидратации, поэтому многие косметические средства ставят своей целью увлажнение кожи. Изменить скорость поступления воды из сосудов дермы очень трудно. В какой-то степени этому способствует массаж, контрастные ванны и маски, стимулирующие кровоток в коже. Не менее трудно повысить водосберегающую способность дермы, например, увеличить содержание в ней гигроскопичных молекул, таких, как гликозаминогликаны и коллаген. Поэтому главной точкой воздействия для косметики всегда был роговой слой.
Долгое время было принято считать, что роговой слой защищен от высыхания воднолипидной мантией, которая образована секретом сальных и потовых желез, смешанны с отмершими клетками. Поэтому в косметику вводились жиры, напоминающие по своей структуре кожное сало, — ланолин, животные жиры, насыщенные и гидрогенизированные растительные жиры. В последнее время признано, что главными хранителями влаги в коже являются липиды рогового слоя, а кожное сало играет вспомогательную роль. Исходя из этого, произошла смена ориентиров при производстве увлажняющей косметики.

Элос-эпиляция. Избавление от волос навсегда.

Существует множество способов избавления от нежелательных волос, но не один из ниже перечисленных не может гарантировать безопасного и легкого избавления от волос навсегда:

восковая

фотоэпиляция;

электродепиляция;

энзимная депиляция (кремы, гели, муссы);

лазерная эпиляция.

На сегодняшний день самым современным методом удаления волос — является Elos технология. Это уникальный метод, который по принципу действия не имеет ничего общего с лазерной эпиляцией, электроэпиляцией, фотоэпиляцией и другими видами удаления волос (воск, крем, выщипывание). Он наиболее совершенен и основан на сочетании двух видов энергии, что позволяет разрушать структуру волоса, прекращая его рост навсегда.

Преимущества технологии Elos перед другими методами эпиляции

процедура проходит быстро и безболезненно

разрешается загорать до и после процедуры

волосы исчезают навсегда, в том числе и светлые, пушковые волосы.

Elos эпиляция

Elos эпиляция основана на сочетании световой энергии с током ВЧ. Название технологии Elos означает «электро-оптический синергизм». Аппарат для эпиляции волос eLight DS предусматривает двойную защиту эпидермиса. Активное охлаждение насадки для эпиляции волос помогает избежать перегревания эпидермиса, а побочные действия сводятся к абсолютному минимуму.

Свет распределяет температуру в направлении стержня волоса, тем самым защищает кожу от перегрева — снижая риск ожогов кожи и ее раздражения. Ток воздействует на волосяной фолликул, разрушая его. Таким образом, достигается двойной эффект — глубина воздействия увеличивается на 20-30%, при минимуме тепловой нагрузки на близлежащие ткани.

Процедура длится от 10 до 30 минут, в зависимости от обрабатываемой поверхности и от структуры волос. Процесс удаления волос практически безболезненный. Волосы на обработанном участке тела будут исчезать постепенно в течение последующих 3-4 недель, и ваша кожа может оставаться чистой вплоть до следующей процедуры.

После каждой процедуры на теле будет уменьшаться количество вновь вырастающих волос. Для того чтобы воздействовать на все фолликулы обрабатываемого участка тела, нужно провести более 1 процедуры. Большинство людей достигают удовлетворительной чистоты кожи после 4-8 процедур.

Противопоказания

Elos эпиляция практически исключает противопоказания для проведения процедур, так как это более безопасная и совершенная технология эпиляции. Обеспечивается двойная защита кожи, за счет охлаждения поверхности кожи и контроля интенсивности воздействия на разные участки кожи. Это позволяет избежать перегревания кожи и сводит раздражение к минимуму (отсутствие ожогов, покраснения кожи). Но исключения все же есть это онкологические заболевания и беременность.

Elos эпиляция поможет избавиться от нежелательных волос безопасно и навсегда. Эта методика признана во всем мире самой комфортной, безопасной и эффективной.

Более подробную консультацию об Elos эпиляции можно получить у специалистов Израильского Центра Аппаратной Косметологии «Вирсавия».

Израильский центр аппаратной

косметологии «Вирсавия»:Москва, Хохловский пер., дом. 3 стр 1Тел: (495) 917-44-35 / 517-66-20

http://www.virsavia.net

Свойства пенициллинов

Они относятся к обширному классу ?-лактамных антибиотиков (?-лактамов), который включает также цефалоспорины, карбапенемы и монобактамы. БЛА являются основой современной химиотерапии, так как занимают ведущее или важное место в лечении большинства инфекционных болезней. По количеству применяемых в клинике препаратов — это наиболее многочисленная группа среди всех антибактериальных средств. Их многообразие объясняется стремлением получить новые соединения с более широким спектром антибактериальной активности, улучшенными фармакокинетическими характеристиками и устойчивостью к постоянно возникающим новым механизмам резистентности микроорганизмов. 
Общим фрагментом в химической структуре БЛА является бета-лактамное кольцо, именно с его наличием связана микробиологическая активность этих препаратов. Мишенью действия БЛА в микробной клетке являются ферменты транс- и карбоксипептидазы, участвующие в синтезе основного компонента наружной мембраны как грамположительных, так и грамотрицательных микроорганизмов — пептидогликана.

Благодаря способности связываться с пенициллином (и другими БЛА) эти ферменты получили второе название — пенициллинсвязывающие белки (ПСБ). Молекулы ПСБ жестко связаны с цитоплазматической мембраной микробной клетки, они осуществляют образование поперечных сшивок. Связывание БЛА с ПСБ ведет к инактивации последних, прекращению роста и последующей гибели микробной клетки. Таким образом, уровень активности конкретных БЛА в отношении отдельных микроорганизмов в первую очередь определяется их аффинностью (сродством) к ПСБ. Для практики важно то, что чем ниже аффинность взаимодействующих молекул, тем более высокие концентрации антибиотика требуются для подавления функции фермента.
Однако для взаимодействия с ПСБ антибиотику необходимо проникнуть из внешней среды через наружные структуры микроорганизма. У грамположительных микроорганизмов капсула и пептидогликан не являются существенной преградой для диффузии БЛА. Практически непреодолимой преградой для диффузии БЛА является липополисахаридный слой грамотрицательных бактерий.

Единственным путем для диффузии БЛА служат пориновые каналы внешней мембраны, которые представляют собой воронкообразные структуры белковой природы, и являются основным путем транспорта питательных веществ внутрь бактериальной клетки. Следующим фактором, ограничивающим доступ БЛА к мишени действия, являются ферменты бета-лактамазы, гидролизующие антибиотики. Бета-лактамазы, вероятно, впервые появились у микроорганизмов одновременно со способностью к продукции БЛА как факторы нейтрализующие действие синтезируемых антибиотических веществ. В результате межвидового генного переноса бета-лактамазы получили широкое распространение среди различных микроорганизмов, в том числе и патогенных. У грамотрицательных микроорганизмов бета-лактамазы локализуются в периплазматическом пространстве, у грамположительных они свободно диффундируют в окружающую среду.
К практически важным свойствам бета-лактамаз относятся:
Субстратный профиль (способность к преимущественному гидролизу тех или иных БЛА, например пенициллинов или цефалоспоринов или тех и других в равной степени).
Локализация кодирующих генов (плазмидная или хромосомная). Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри- и межвидовое распространение резистентности, при хромосомной наблюдают распространение резистентного клона. 
Тип экспрессии (конститутивный или индуцибельный). При конститутивном типе микроорганизмы синтезируют бета-лактамазы с постоянной скоростью, при индуцибельном количество синтезируемого фермента резко возрастает после контакта с антибиотиком (индукции).
Как уже было отмечено, БЛА обладают весьма широким спектром действия, однако с клинической точки зрения существует группа микроорганизмов, являющихся исключением из спектра их активности. Речь идет об облигатных и факультативных внутриклеточных паразитах (риккетсии, хламидии, легионеллы, бруцеллы и др.). Отсутствие или низкий уровень клинической эффективности при инфекциях, вызываемых этими микроорганизмами, связан с ограниченной способностью БЛА проникать внутрь клеток макроорганизма, прежде всего фагоцитов, где и локализуется возбудитель.
Классификация пенициллинов:
Природные:
Бензилпенициллин (пенициллин), натриевая и калиевая соли;
Бензилпенициллин прокаин (новокаиновая соль пенициллина)
Бензатин бензилпенициллин;
Феноксиметилпенициллин;
Полусинтетические:
Изоксазолилпенициллины:
Оксациллин
Аминопенициллины: 
Ампициллин
Амоксициллин
Карбоксипенициллины:
Карбенициллин
Тикарциллин
Уреидопенициллины:
Азлоциллин
Пиперациллин
Ингибиторозащищенные пенициллины: 
Амоксициллин/клавуланат
Ампициллин/сульбактам
Тикарциллин/клавуланат
Пиперациллин/тазобактам
Родоначальником пенициллинов (и вообще всех ?-лактамов) является бензилпенициллин (пенициллин G, или просто пенициллин), применяющийся в клинической практике с начала 40-х годов. В настоящее время группа пенициллинов включает целый ряд препаратов, которые в зависимости от происхождения, химической структуры и антимикробной активности подразделяются на несколько подгрупп. Из природных пенициллинов в медицинской практике применяются бензилпенициллин и феноксиметилпенициллин. Другие препараты представляют собой полусинтетические соединения, получаемые в результате химической модификации различных природных антимикробных препаратов или промежуточных продуктов их биосинтеза.
Механизм действия.
Пенициллины (и все другие ?-лактамы) обладают бактерицидным эффектом. Мишень их действия, как уже было сказано ранее, — пенициллиносвязывающие белки бактерий, которые выполняют роль ферментов на завершающем этапе синтеза пептидогликана — биополимера, являющегося основным компонентом клеточной стенки бактерий. Блокирование синтеза пептидогликана приводит к гибели бактерии.
Для преодоления широко распространенной среди микроорганизмов приобретенной устойчивости, связанной с продукцией особых ферментов — ?-лактамаз, разрушающих ?-лактамы, — были разработаны соединения, способные необратимо подавлять активность этих ферментов, так называемые ингибиторы ?-лактамаз — клавулановая кислота (клавуланат), сульбактам и тазобактам. Они используются при создании комбинированных (ингибиторозащищенных) пенициллинов.
Поскольку пептидоглик
ан и пенициллиносвязывающие белки отсутствуют у млекопитающих, специфическая токсичность в отношении макроорганизма для ?-лактамов нехарактерна.
Спектр активности
Природные пенициллины
Характеризуются идентичным антимикробным спектром, но несколько различаются по уровню активности. Величина МПК феноксиметилпенициллина в отношении большинства микроорганизмов, как правило, несколько выше, чем бензилпенициллина.
Эти антимикробные препараты активны в отношении грамположительных бактерий, таких как Streptococcus spp., Staphylococcus spp., Bacillus spp., в меньшей степени — в отношении Enterococcus spp. Для энтерококков характерны также межвидовые различия в уровне чувствительности к пенициллинам: если штаммы E.faecalis обычно чувствительны, то E.faecium, как правило, устойчивы.
К природным пенициллинам высокочувствительны листерии (L.monocytogenes), эризипелотрикс (E.rhusiopathiae), большинство коринебактерий (включая C.diphtheriae) и родственных микроорганизмов. Важным исключением является высокая частота устойчивости среди C.jeikeium.
Из грамотрицательных бактерий к природным пенициллинам чувствительны Neisseria spp., P.multocida и H.ducreyi.
Большинство анаэробных бактерий (актиномицеты, Peptostreptococcus spp., Clostridium spp.) чувствительны к природным пенициллинам. Практически важным исключением из спектра активности природных пенициллинов являются B.fragilis и другие бактероиды.
Природные пенициллины высокоактивны в отношении спирохет (Treponema, Borrelia, Leptospira).
Приобретенная резистентность к природным пенициллинам чаще всего встречается среди стафилококков. Она связана с продукцией ?-лактамаз (частота распространения 60-80%) или наличием дополнительного пенициллиносвязывающего белка. В последние годы отмечается рост устойчивости гонококков.
Изоксазолилпенициллины (пенициллиназостабильные, антистафилококковые пенициллины)
В России основным антимикробным препаратом этой группы является оксациллин. По антимикробному спектру он близок к природным пенициллинам, однако уступает им по уровню активности в отношении большинства микроорганизмов. Принципиальным отличием оксациллина от других пенициллинов является устойчивость к гидролизу многими ?-лактамазами.
Основное клиническое значение имеет устойчивость оксациллина к стафилококковым ?-лактамазам. Благодаря этому оксациллин оказывается высокоактивным в отношении подавляющего большинства штаммов стафилококков (включая PRSA) — возбудителей внебольничных инфекций. Активность препарата в отношении других микроорганизмов не имеет практического значения. Оксациллин не действует на стафилококки, резистентность которых к пенициллинам связана не с выработкой ?-лактамаз, а с появлением атипичных ПСБ — MRSA.
Аминопенициллины и ингибиторозащищенные аминопенициллины
Спектр активности аминопенициллинов расширен за счет действия на некоторых представителей семейства Enterobacteriaceae — E.coli, Shigella spp., Salmonella spp. и P.mirabilis, для которых характерен низкий уровень продукции хромосомных ?-лактамаз. По активности в отношении шигелл ампициллин несколько превосходит амоксициллин.
Преимущество аминопенициллинов перед природными пенициллинами отмечается в отношении Haemophilus spp. Важное значение имеет действие амоксициллина на H.pylori.
По спектру и уровню активности в отношении грамположительных бактерий и анаэробов аминопенициллины сопоставимы с природными пенициллинами. Однако листерии более чувствительны к аминопенициллинам.
Аминопенициллины подвержены гидролизу всеми ?-лактамазами.
Антимикробный спектр ингибиторозащищенных аминопенициллинов (амоксициллин/клавуланат, ампициллин/сульбактам) расширен за счет таких грамотрицательных бактерий, как Klebsiella spp., P.vulgaris, C.diversus, а также анаэробов группы B.fragilis, которые синтезируют хромосомные ?-лактамазы класса А.
Кроме того, ингибиторозащищенные аминопенициллины активны в отношении микрофлоры с приобретенной резистентностью, обусловленной продукцией ?-лактамаз: стафилококков, гонококков, M.catarrhalis, Haemophilus spp., E.coli, P.mirabilis.
В отношении микроорганизмов, устойчивость которых к пенициллинам не связана с продукцией ?-лактамаз (например, MRSA, S.pneumoniae), ингибиторозащищенные аминопенициллины каких-либо преимуществ не проявляют.
Карбоксипенициллины и ингибиторозащищенные карбоксипенициллины
Спектр действия карбенициллина и тикарциллина* в отношении грамположительных бактерий в целом совпадает с таковым других пенициллинов, но уровень активности ниже.
Карбоксипенициллины действуют на многих представителей
семейства Enterobacteriaceae (за исключением Klebsiella spp., P.vulgaris, C.diversus), а также на P.aeruginosa и другие неферментирующие микроорганизмы. Следует учитывать, что многие штаммы синегнойной палочки в настоящее время устойчивы.
Эффективность карбоксипенициллинов ограничивается способностью многих бактерий к выработке различных ?-лактамаз. Негативный эффект некоторых из этих ферментов (класс А) не проявляется в отношении ингибиторозащищенного производного тикарциллина — тикарциллин/клавуланата, который имеет более широкий антимикробный спектр за счет действия на Klebsiella spp., P.vulgaris, C.diversus, а также B.fragilis. К нему реже отмечается резистентность других грамотрицательных бактерий и стафилококков. Однако наличие ингибитора ?-лактамаз не всегда обеспечивает активность в отношении ряда грамотрицательных бактерий, продуцирующих хромосомные ?-лактамазы класса С.
Необходимо также иметь в виду, что тикарциллин/клавуланат не имеет преимуществ перед тикарциллином по действию на P.aeruginosa.
Уреидопенициллины и ингибиторозащищенные уреидопенициллины
Азлоциллин и пиперациллин обладают сходным спектром активности. По действию на грамположительные бактерии они существенно превосходят карбоксипенициллины и приближаются к аминопенициллинам и природным пенициллинам.
Уреидопенициллины высокоактивны в отношении практически всех важнейших грамотрицательных бактерий: семейства Enterobacteriaceae, P.aeruginosa, других псевдомонад и неферментирующих микроорганизмов (S.maltophilia).
Однако самостоятельное клиническое значение уреидопенициллинов достаточно ограничено, что объясняется их лабильностью к действию подавляющего большинства ?-лактамаз как стафилококков, так и грамотрицательных бактерий.
Этот недостаток в значительной степени компенсирован у ингибиторозащищенного препарата пиперациллин/тазобактама, обладающего наиболее широким спектром (включающим анаэробы) и высоким уровнем антибактериальной активности среди всех пенициллинов. Тем не менее, как и в случае с другими ингибиторозащищенными пенициллинами, штаммы, вырабатывающие ?-лактамазы класса С, являются устойчивыми к пиперациллин/тазобактаму.
Фармакокинетика.
Бензилпенициллин, карбоксипенициллины и уреидопенициллины в значительной степени разрушаются под влиянием соляной кислоты желудочного сока, поэтому применяются только парентерально. Феноксиметилпенициллин, оксациллин и аминопенициллины более кислотоустойчивы и могут назначаться внутрь. Наилучшим всасыванием в ЖКТ характеризуется амоксициллин (75% и более).

Наиболее высокую степень всасывания (93%) имеют специальные растворимые таблетки (флемоксин солютаб). Биодоступность амоксициллина не зависит от приема пищи. Всасывание феноксиметилпенициллина составляет 40-60% (при приеме натощак концентрации в крови несколько выше). Хуже всасываются ампициллин (35-40%) и оксациллин (25-30%), причем пища значительно уменьшает их биодоступность. Всасывание ингибитора ?-лактамаз клавуланата составляет 75% и под влиянием пищи может несколько увеличиваться.
Бензилпенициллин прокаин и бензатин бензилпенициллин вводятся только в/м. Медленно всасываясь из места инъекции, создают более низкие, по сравнению с натриевой и калиевой солями бензилпенициллина, концентрации в сыворотке крови. Оказывают пролонгированное действие (объединяются под названием «депо-пенициллины»). Терапевтические уровни бензилпенициллин прокаина в крови сохраняются в течение 18-24 ч, а бензатин бензилпенициллина — до 2-4 нед.
Пенициллины распределяются во многих органах, тканях и биологических жидкостях. Создают высокие концентрации в легких, почках, слизистой оболочке кишечника, репродуктивных органах, костях, плевральной и перитонеальной жидкости. Наиболее высокие концентрации в желчи характерны для уреидопенициллинов.

В небольших количествах проходят через плаценту и проникают в грудное молоко. Плохо проходят через ГЭБ и гематоофтальмический барьер, а также в предстательную железу. При воспалении оболочек мозга проницаемость через ГЭБ увеличивается. Распределение ингибиторов ?-лактамаз существенно не отличается от такового для пенициллинов.
Клинически значимой биотрансформации в печени могут подвергаться оксациллин (до 45%) и уреидопенициллины (до 30%). Другие пенициллины практически не метаболизируются и выводятся из организма в неизмененном виде. Среди ингибиторов ?-лактамаз наиболее интенсивно метаболизируется клавуланат (около 50%), в меньшей степени — сульбактам (около 25%), еще слабее — тазобактам.
Большинство пенициллинов экскретируется почками. Их период полувыведения составляет в среднем около 1 ч (кроме «депо-пенициллинов») и значительно возрастает при почечной недостаточности. Оксациллин и уреидопенициллины имеют двойной путь выведения — почками и через билиарную систему. Их период полувыведения в меньшей степени изменяется при нарушении функции почек.
Почти все пенициллины полностью удаляются при гемодиализе. Концентрация пиперациллин/тазобактама уменьшается при проведении гемодиализа на 30-40%.
С анализом российского рынка пенициллинов Вы можете познакомиться в отчете Академии Конъюнктуры Промышленных Рынков «Рынок антибиотиков пенициллинового ряда в России».

Общая фармакология — М. И. Рабинович…

Общая фармакология

Цена: 739 рублей

Название: Общая фармакология

Автор: М. И. Рабинович, Г. А. Ноздрин, И. М. Самородова, А. Г. Ноздрин

Серия: Учебники для вузов. Специальная литература

Год выпуска: 2006

ISBN: 5-8114-0652-5

Страниц: 272

Описание:
В учебном пособии описаны пути введения лекарственных веществ в организм животных, отмечены их позитивные и негативные стороны. Дана общая характеристика всасывания, распределения, биотрансформации и выведения лекарств из организма. Освещены виды взаимодействия лекарственных веществ при их комбинированном применении и возможные побочные эффекты. По каждой теме даны задания для определения исходного уровня знаний, самостоятельной работы и выяснения итоговых знаний. Учебное пособие предназначено для студентов, обучающихся по ветеринарным специальностям.

Свежие записи
Реклама